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a b s t r a c t 

The Discrete Equivalent Wing Crack Damage (DEWCD) model formulated in this paper couples micro- 

mechanics and Continuum Damage Mechanics (CDM) principles. At the scale of the Representative 

Elementary Volume (REV), damage is obtained by integrating crack densities over the unit sphere, 

which represents all possible crack plane orientations. The unit sphere is discretized into 42 integra- 

tion points. The damage yield criterion is expressed at the microscopic scale: if a crack is in ten- 

sion, crack growth is controlled by a mode I fracture mechanics criterion; if a crack is in compres- 

sion, the shear stress that applies at its faces is projected on the directions considered in the numer- 

ical integration scheme, and cracks perpendicular to these projected force components grow according 

to a mode I fracture mechanics criterion. The projection of shear stresses into a set of tensile forces 

allows predicting the occurrence of wing cracks at the tips of pre-existing defects. We assume that 

all of the resulting mode I cracks do not interact, and we adopt a dilute homogenization scheme. A 

hardening law is introduced to account for subcritical crack propagation, and non-associated flow rules 

are adopted for damage and irreversible strains induced by residual crack displacements after unload- 

ing. The DEWCD model depends on only 6 constitutive parameters which all have a sound physical 

meaning and can be determined by direct measurements in the laboratory. The DEWCD model is cal- 

ibrated and validated against triaxial compression tests performed on Bakken Shale. In order to high- 

light the advantages of the DEWCD model over previous anisotropic damage models proposed for rocks, 

we simulated: (a) A uniaxial tension followed by unloading and reloading in compression; and (b) Uni- 

axial compression loading cycles of increasing amplitude. We compared the results obtained with the 

DEWCD model with those obtained with a micro-mechanical model and with a CDM model, both cal- 

ibrated against the same experimental dataset as the DEWCD model. The three models predict a non 

linear-stress/strain relationship and damage-induced anisotropy. The micro-mechanical model can capture 

unilateral effects. The CDM model can capture the occurrence of irreversible strains. The DEWCD model 

can capture both unilateral effects and irreversible strains. In addition, the DEWCD model can predict 

the apparent increase of strength and ductility in compression when the confinement increases and the 

increasing hysteresis on unloading-reloading paths as damage increases. The DEWCD model is the only 

of the three models tested that provides realistic values of yield stress and strength in tension and com- 

pression. This is a significant advancement in the theoretical modeling of brittle solids. Future work will 

be devoted to the prediction of crack coalescence and to the modeling of the material response with 

interacting micro-cracks. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

In most brittle materials such as rocks, concrete and ceramic

omposites, mechanical failure is the result of a sequence of cou-

led micro-processes. In Continuum Damage Mechanics (CDM),

nisotropic damage is usually represented by second-order ten-

ors ( Murakami, 1988; Halm and Dragon, 1996 ) or fourth-order
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ensors ( Ju, 1989 ) that depend on the density and orientation of

amilies of micro-cracks. The expression of the damaged stiffness

ensor is based on the principle of strain or energy equivalence

 Murakami, 2012 ), and stress/strain relationships are deduced from

he thermodynamic relationships that are derived from the en-

rgy potentials. The damage flow rule, combined with the consis-

ency condition, allows determining the evolution of the magni-

ude and direction of micro-cracks ( Simo and Ju, 1987; Chaboche,

993; Hayakawa and Murakami, 1997 ). CDM models were imple-

ented in Finite Element Methods (FEM) for practical engineer-
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ing purposes (e.g., Jin et al. (2015) ; Xu and Arson (2015) ; Jin et al.

(2016) ) and were successfully used to predict damage-induced

anisotropy and confinement-induced strengthening in rock subject

to compression (e.g., Shao and Rudnicki (20 0 0) ; Shao et al. (20 05) ;

2006 )), as well as unilateral effects (e.g., Chaboche (1993) ; Dragon

et al. (20 0 0) ). However, multiple non-linear damage phenomena

require more constitutive parameters that are often not related

to any microstructure or mechanical property, which raises cali-

bration challenges ( Halm and Dragon, 1996; 1998; Arson, 2014 ).

Moreover, difficulties arise when distinguishing tension and com-

pression: either the stress or the strain tensor has to be split into

positive and negative components. Damage evolution depends on

distinct yield criteria and damage potentials ( Lubarda et al., 1994;

Frémond and Nedjar, 1996; Comi and Perego, 2001; Zhu and Arson,

2013 ). These so called bi-dissipative models are based on complex

mathematical formulations (challenging to implement in FEM) and

depend on a large number of parameters (challenging to calibrate).

In micromechanical models, a direct relationship is established be-

tween the macroscopic mechanical behavior and micro-crack initi-

ation, propagation, opening, closure and frictional sliding. In the di-

lute crack scheme, the calculation of the displacement jump across

crack faces ( Budiansky and O’connell, 1976 ) is used as a basis to

upscale the effective properties of the damaged REV ( Kachanov,

1992; 1993 ) and to express the corresponding energy potentials

( Kachanov, 1982a; 1982b; Pensée et al., 2002; Pensee and Kondo,

2003 ). The evolution law is based on fracture mechanics and can

represent Mode I splitting ( Krajcinovic et al., 1991; Gambarotta and

Lagomarsino, 1993 ), Mode II friction sliding ( Gambarotta and Lago-

marsino, 1993 ) or mixed Mode wing crack development ( Kachanov,

1982b; Nemat-Nasser and Obata, 1988 ). In order to account for

crack interactions, one can explicitly express the stress field that

results from external loading and crack interaction ( Paliwal and

Ramesh, 2008 ). Other upscaling techniques (e.g., Zhu et al. (2008) ;

2009 ); Zhu and Shao (2015) ; Qi et al. (2016a ); 2016b )) resort to

Eshelby homogenization procedure ( Eshelby, 1957 ), in which the

cracked solid is viewed as a matrix-inclusion system ( Dormieux

et al., 2006 ). Micromechanical formulations automatically predict

unilateral effects but usually cannot capture the inelastic defor-

mation together with the softening that characterize the REV be-

havior after the peak of stress, and they require computation-

ally intensive resolution algorithms. In this paper, we formulate

an anisotropic damage model that couples micro-mechanical crack

propagation criteria and CDM energy principles with a minimum

number of constitutive parameters. In Section 2 , we present the

theoretical formulation of our model, called the Discrete Equiva-

lent Wing Crack based Damage model (DEWCD). A finite number

of orientations is used to project the normal and tangential crack

displacement vectors. The damage variable is a second-order crack

density tensor, and the irreversible deformation is the crack open-

ing vector averaged over all possible crack orientations. In tension,

cracks propagate in mode I in the direction normal to the ten-

sile stress. In compression, wing cracks propagate in mode I in

the direction of the minimum deviatoric stress. We calibrate and

validate the DEWCD model against triaxial compression data ob-

tained on Middle Bakken shale. In Section 3 , we use the same ex-

perimental dataset to calibrate a phenomenological damage model,

the Differential-Stress Induced Damage (DSID) model ( Xu and Ar-

son, 2014; 2015 ) and a micromechanical damage model ( Pensée

et al., 2002; Pensee and Kondo, 2003 ). We simulate: (1) A uniaxial

tension followed by unloading and uniaxial compression; and (2)

Two loading-unloading cycles of uniaxial compression of increasing

amplitude. We compare the performance of the three models for

capturing damage-induced anisotropy of stiffness, unilateral effects

in compression, damage hysteresis during unloading-reloading cy-

cles, damage-induced irreversible strains, confinement-dependent

strength, and differences of behavior in tension and compression. 
. Theoretical formulation of the discrete equivalent wing 

rack damage (DEWCD) model 

.1. Micromechanics-based free enthalpy 

We formulate a CDM model in which the expression of the free

nthalpy is obtained from micromechanics principles. In the fol-

owing, we consider a REV of volume �r and external boundary

�r , in which a large number of penny shaped microscopic cracks

f various orientations are embedded in an isotropic linear elas-

ic matrix of compliance tensor S 0 . Each microscopic crack is char-

cterized by its normal direction 
−→ 

n and its radius a , which is at

east 100 times smaller than the REV size. Opposite crack faces are

oted ω 
+ and ω 

−, with normal vectors 
−→ 

n + and −→ 

n −. The displace-
ent jump is noted: 

 

−→ 

u ] = 

−→ 

u + − −→ 

u − (1)

here 
−→ 

u + (respectively −→ 

u −) denotes the displacement vector at

ace ω 
+ (respectively ω 

−). We consider a uniform stress field σ ap-

lied at the boundary ∂�r . The displacement field at the REV scale

s calculated by superposition, by adding up the displacement field

n the elastic matrix in the absence of cracks and the displacement

eld induced by the opening and sliding of micro-crack faces. 

We assume that the mechanical interaction between cracks is

egligible and we use a dilute homogenization scheme to calculate

he crack displacement jumps. As a result, the average micro stress

s equal to the stress field applied to the REV, so that we have: 

= 

1 

| �r | 
∫ 
�r 

[ σm (x ) + σc (x )] d x (2)

n which σc is the stress field that is applied at micro-crack faces

nd σm is the stress field in the linear elastic matrix. Moreover, the

ocal stress at crack faces is self-equilibrating, so that: 

1 

| �r | 
∫ 
�r 

σc (x ) d x = 0 (3)

nd therefore: 

= 〈 σm 〉 (4)

he strain tensor in the matrix is obtained as follows: 

m = S 0 : σ. (5)

ach micro-crack can be considered as a single crack embedded

n an infinite elastic homogeneous matrix, which allows calculat-

ng the displacement jumps from fracture mechanics principles

 Horii and Nemat-Nasser, 1983; Kachanov et al., 2013 ). Consider-

ng a penny shaped crack of radius a subjected to a uniformly dis-

ributed normal stress p at its faces and embedded in an infinite

lastic medium with Young’s modulus E 0 and Poisson’s ratio ν0 ,

he normal displacement jump is: 

 u n ] = 8 
1 − ν2 

0 

πE 0 
p 
√ 

a 2 − r 2 (6)

he corresponding average Crack Opening Displacement (COD) is

herefore: 
 

[ u n ] 

〉 
= 

16 

3 

1 − ν2 
0 

πE 0 
pa (7)

imilarly, considering a penny shaped crack of radius a subjected

o a uniformly distributed shear stress 
−→ τ at its faces and embed-

ed in an infinite elastic medium with Young’s modulus E 0 and

oisson’s ratio ν0 , the shear displacement jump is expressed as

 Kachanov et al., 2013 ): 

 

[ 
−→ 

u t ] 

〉 
= 

32 

3 

1 − ν2 
0 

(2 − ν0 ) πE 0 

−→ τ a (8)
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(  
e first consider a REV that contains a single family of N cracks of

ame orientation 
−→ 

n i and same size a i . The volume fraction of the

ormal and shear displacement jumps are calculated as follows: 

βi = 

N 

| �r | 
〈 
[ u n ] 

〉 
π(a i ) 

2 = ρi c 0 σ
c : ( 

−→ 

n i �
−→ 

n i ) 

 γi = 

N 

| �r | 
〈 
[ 
−→ 

u t ] 

〉 
π(a i ) 

2 = ρi c 1 (σ
c · −→ 

n i − ( 
−→ 

n i · σc · −→ 

n i ) 
−→ 

n i ) (9) 

here p = σc : ( 
−→ 

n i �
−→ 

n i ) , 
−→ τ = σc · −→ 

n i − ( 
−→ 

n i · σc · −→ 

n i ) 
−→ 

n i and ρ i is

he damage density along the direction 
−→ 

n i , expressed as: 

i = 

Na 3 

| �r | (10) 

he coefficient c 0 (respectively c 1 ) is defined as the normal (re-

pectively shear) elastic compliance of the crack ( Budiansky and

’connell, 1976; Kachanov, 1992 ): 

 0 = 

16 

3 

1 − ν2 
0 

E 0 

 1 = 

32 

3 

1 − ν2 
0 

(2 − ν0 ) E 0 
(11) 

According to the dilute homogenization scheme, the average

train due to the crack r is calculated as: 
 

εc,r 
〉 

= 

1 

2 | �r | 
∫ 
∂ω + 

( 
−→ 

n � [ 
−→ 

u ] + [ 
−→ 

u ] �
−→ 

n ) d S (12)

s a result, the overall average strain due to the entire family of

icro-cracks of normal 
−→ 

n i can be obtained by summation, as fol-

ows: 

c = 

N 

| �r | 
∫ 
∂ω + 

[ u n ]( 
−→ 

n i �
−→ 

n i ) d S 

+ 

N 

2 | �r | 
∫ 
∂ω + 

([ 
−→ 

u t ] �
−→ 

n i + 

−→ 

n i � [ 
−→ 

u t ]) d S 

= βi 
−→ 

n i �
−→ 

n i + 

1 

2 
( 
−→ γi �

−→ 

n i + 

−→ 

n i �
−→ γi ) (13) 

ith [ u n ] = [ 
−→ 

u ] · −→ 

n i and [ 
−→ 

u t ] = [ 
−→ 

u ] − [ u n ] 
−→ 

n i . The free energy W 
∗

f the REV containing the N cracks of orientation 
−→ 

n i is the sum of

he elastic deformation energy of the matrix and the energy stored

n the micro cracks displacement jumps: 

 
∗ = 

1 

2 
εm : C 0 : ε

m + 

1 

2 
σc : εc (14) 

ow substituting Eqs. (9) and (13) into the above equation, the

elmholtz free energy W 
∗ of the REV can be rewritten as: 

 
∗ = 

1 

2 
εm : C 0 : ε

m + 

1 

2 
σc : 

[ 
βi 

−→ 

n i �
−→ 

n i + 

1 

2 
( 
−→ γi �

−→ 

n i + 

−→ 

n i �
−→ γi ) 

]

= 

1 

2 
εm : C 0 : ε

m + 

1 

2 ρi c 0 
β2 
i + 

1 

2 ρi c 1 

−→ γi · −→ γi (15)

he Gibbs energy (free enthalpy) is obtained by Legendre transfor-

ation, as follows: 

 
∗ = σ : εE −W 

∗ (16) 

n which εE = εm + εc is the REV elastic strain. As a result, G 
∗ is

xpressed as: 

 
∗ = 

1 

2 
σ : S 0 : σ + σ : εc − 1 

2 
σc : εc 

= 

1 

2 
σ : S 0 : σ + σ : [ βi 

−→ 

n i �
−→ 

n i + 

1 

2 
( 
−→ γi �

−→ 

n i + 

−→ 

n i �
−→ γi )] 

− 1 

2 ρi c 0 
β2 
i − 1 

2 ρi c 1 

−→ γi · −→ γi (17) 
or a reversible process, i.e. for a fixed crack density, we have: 

˙ 
 
∗ = εE : ˙ σ

0 = [ σ : ( 
−→ 

n i �
−→ 

n i ) −
1 

ρi c 0 
βi ] ˙ βi + [(σ · −→ 

n i − ( 
−→ 

n i · σ · −→ 

n i ) 
−→ 

n i ) 

− 1 

ρi c 1 

−→ γi ] · ˙ −→ γi (18) 

rom which we get: 

σ : ( 
−→ 

n i �
−→ 

n i ) = 

1 

ρi c 0 
βi 

· −→ 

n i − ( 
−→ 

n i · σ · −→ 

n i ) 
−→ 

n i = 

1 

ρi c 1 

−→ γi · ˙ −→ γi (19) 

According to the dilute homogenization scheme, the equivalent

raction at the crack faces (at the REV scale) is given by: 

 

t i = σc · −→ 

n i (20) 

 normal displacement jump can only be induced by a tensile

orce, i.e. for 
−→ 

n i · σ · −→ 

n i ≤ 0 (in which compression is counted pos-

tive, according to the soil mechanics convention). The unilateral

ontact condition at crack faces can be expressed as 

 u n ] ≥ 0 , σnn = 

−→ 

n · σ · −→ 

n ≤ 0 , [ u n ] σnn = 0 (21)

sing the conjugation relationships in Eq. (19) in the expression of

ree enthalpy in Eq. (17) and introducing the unilateral condition,

e get: 

 
∗ = 

1 

2 
σ : S 0 : σ + 

1 

2 
c 0 ρi ( 

−→ 

n i · σ · −→ 

n i ) 〈 −→ 

n i · σ · −→ 

n i 〉 + 

+ 

1 

2 
c 1 ρi [(σ · σ) : ( 

−→ 

n i �
−→ 

n i ) − σ : ( 
−→ 

n i �
−→ 

n i �
−→ 

n i �
−→ 

n i ) : σ] 

(22) 

n which we note 〈 x 〉 + = x, x ≥ 0 , and 〈 x 〉 + = 0 , x < 0 . The Gibbs

nergy of the REV is obtained by integrating G 
∗ for a distribution

f crack orientations ρ( n ), over the unit sphere S 2 = { −→ 

n , | −→ 

n | = 1 } ,
s follows: 

 = 

1 

2 
σ : S 0 : σ + 

1 

8 π

∫ 
S 2 
{ c 0 ρ( 

−→ 

n )( 
−→ 

n · σ · −→ 

n ) 〈 −→ 

n · σ · −→ 

n 〉 + 

+ c 1 ρ( 
−→ 

n )[(σ · σ) : ( 
−→ 

n �
−→ 

n ) 

−σ : ( 
−→ 

n �
−→ 

n �
−→ 

n �
−→ 

n ) : σ] } d S (23) 

ecause the calculation of the integral above is impractical for

 continuous distribution ρ( 
−→ 

n ) , we use a numerical integration

cheme, with M integration points: 

 = 

1 

2 
σ : S 0 : σ + 

1 

2 

M ∑ 

i =1 

w i { c 0 ρi ( 
−→ 

n i · σ · −→ 

n i ) 〈 −→ 

n i · σ · −→ 

n i 〉 + 

+ c 1 ρi [(σ · σ) : ( 
−→ 

n i �
−→ 

n i ) 

−σ : ( 
−→ 

n i �
−→ 

n i �
−→ 

n i �
−→ 

n i ) : σ] } (24) 

here w i is the weight in direction n i . We adopt Bazant’s discrete

cheme with 2 × 21 microplanes ( Bažant and Oh, 1986 ). Note that

he calculation of G requires M calculations at each time step. In-

reasing M can increase exponentially the computational cost of

he numerical integration. Bazant’s 2 × 21 scheme provides sat-

sfactory accuracy at reasonable computation cost. For a detailed

iscussion about the performance of numerical integration scheme,

he reader is referred to ( Ehret et al., 2010; Levasseur et al., 2013 ). 

The expression of Gibbs energy expressed in Eq. (24) accounts

or the displacement field induced by crack opening and crack slid-

ng, but not for crack growth (i.e., the model does not account for

he increase of crack radius). In order to account for inelastic crack

ebonding (i.e. crack radius growth), we introduce the inelastic

train εin in the formulation. We adopt a hyper-elastic framework

 Collins and Houlsby, 1997 ), in which the REV strain tensor ε is
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Fig. 1. Wing crack propagation model in 3D under compression. 
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split into a pure elastic part εe which corresponds to the deforma-

tion of elastic matrix, an additional elastic part εd which represents

the micro-crack elastic strain, and the inelastic deformation εin , as
follows: 

ε = εe + εd + εin = εE + εin (25)

In which: 

εe = 

1 + ν0 

E 0 
σ − ν0 

E 0 
Tr (σ) δ

εd = 

M ∑ 

i =1 

w i { c 0 ρi 〈 −→ 

n i · σ · −→ 

n i 〉 + −→ 

n i �
−→ 

n i 

+ c 1 ρi [ σ · ( −→ 

n i �
−→ 

n i ) − ( 
−→ 

n i · σ · −→ 

n i ) 
−→ 

n i �
−→ 

n i ] } (26)

Conjugation relationships can be established to calculate the total

elastic strain εE and the damage driving force Y i : 

εE = εe + εd = 

∂G 

∂σ
(27)

 i = 

∂G 

∂ ρi 

= 

1 

2 
w i { c 0 ( −→ 

n i · σ · −→ 

n i ) 〈 −→ 

n i · σ · −→ 

n i 〉 + + c 1 [(σ · σ) : ( 
−→ 

n i �
−→ 

n i )

−σ : ( 
−→ 

n i �
−→ 

n i �
−→ 

n i �
−→ 

n i ) : σ] } (28)

2.2. Damage yield criterion 

Uniaxial compression tests performed on two-dimensional pho-

toelastic materials highlighted the occurrence of two wing cracks

at the tips of pre-existing cracks. Wing cracks propagate along a

curved path, of average direction parallel to the direction of maxi-

mum compression ( Nemat-Nasser and Horii, 1982; Ashby and Hal-

lam, 1986; Horii and Nemat-Nasser, 1986 ). The sliding wing crack

model was initially presented in the pioneering work of Bom-

bolakis and Brace ( Bombolakis and Brace, 1963 ). Since then, nu-

merous studies were devoted to the mechanisms of crack propa-

gation in brittle solids under compression, for instance: ( Nemat-

Nasser and Horii, 1982; Ashby and Hallam, 1986; Horii and

Nemat-Nasser, 1986; Dyskin and Salganik, 1987; Nemat-Nasser and

Obata, 1988; Lehner and Kachanov, 1996 ). 3D lab experiments

( Germanovich et al., 1994; Sahouryeh et al., 2002 ), numerical sim-

ulations ( Scholtès and Donzé, 2012 ) and theoretical derivations

( Dyskin and Salganik, 1987 ) were also proposed to model the prop-

agation of tensile wing cracks at the tip of sliding cracks (‘slips’).

Friction forces at the faces of slips are thus the forces driving

the propagation of wing cracks. 3D wing cracks propagate due to

mixed failure modes (I, II or III) at different locations along the

edge of the pre-exiting slip cracks. The shape of 3D wing cracks

is therefore extremely complex, and depends on a high number of

parameters. 

For practicality, we ignore friction at crack faces, i.e. we assume

that wing cracks propagate in pure mode I and we represent the

propagation of shear cracks in the form of tensile wing cracks. We

ignore the interaction between these tensile micro-cracks and we

apply the dilute hogenization scheme. If the unilateral contact con-

dition is satisfied, cracks propagate due to normal tensile stresses,

according to the following mode I propagation criterion: 

f d (σ, a i ) = σ i 
nn −

K c √ 

a i 
(29)

Where K c is a constitutive parameter which represents the mate-

rial toughness. We define the second-order crack density tensor �
(also called second-order damage tensor) as follows: 

� = 

M ∑ 

i =1 

ρi 
−→ 

n i �
−→ 

n i . (30)
f the unilateral contact condition is not satisfied, shear stresses

t the faces of slip cracks induce the propagation of wing cracks.

ollowing ( Horii and Nemat-Nasser, 1986; Lehner and Kachanov,

996 ), we represent two half wing cracks as a single fictitious cir-

ular crack, as shown in Fig. 1 . 

The direction of maximum shear stress at the faces of the

racks perpendicular to direction 
−→ 

n i can be calculated as follows:

→ 

 i = 

τ c 

|| τ c || = 

σ · −→ 

n i − ( 
−→ 

n i · σ · −→ 

n i ) 
−→ 

n i 

|| σ · −→ 

n i − ( 
−→ 

n i · σ · −→ 

n i ) 
−→ 

n i || 
(31)

e solve the wing crack propagation problem in two dimensions,

y assuming that the normal of the equivalent fictitious circular

rack that represents the wing cracks is contained in the plane ( m i ,

 i ). Therefore, we have: 

σ i 
nn = 

−→ 

n i · σ · −→ 

n i 

τ i 
nm 

= || σ · −→ 

n i − ( 
−→ 

n i · σ · −→ 

n i ) 
−→ 

n i || 
i 
mm 

= 

−→ 

m i · σ · −→ 

m i (32)

he tensile force F applied at the faces of the fictitious wing crack

s equal to the shear forces undergone by the pre-existing ‘slip’ of

adius a i , and can be calculated as: 

 = πa 2 i τ
c = πa 2 i τ

i 
nm 

(33)

Experimental ( Sahouryeh et al., 2002 ) and numerical ( Scholtès

nd Donzé, 2012 ) studies indicate that wing cracks propagate

long the direction of maximum compression stress. When the

re-existing ‘slip’ crack is in compression and subjected to shear

tresses, the normal to the fictitious planar crack representing the

ing cracks is therefore oriented in the direction of minimum

ompression ( Eq. (32) ). Using Mohr’s circles, the intensity σmin and

irection θ i of the mimimum compression are calculated as fol-

ows: 

an (2 θi ) = 

2 τ i 
nm 

σ i 
mm 

− σ i 
nn 

σmin = 

σ i 
mm 

+ σ i 
nn 

2 
−

√ 

( 
σ i 
mm 

− σ i 
nn 

2 
) 2 + (τ i 

nm 
) 2 (34)

ased on the theory of linear fracture mechanics, we consider that

he wing crack propagates only if the stress intensity factor reaches

he material toughness. Assuming that the tensile driving force F is

niformly distributed along the faces of the fictitious planar crack
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Fig. 2. Hyperbolic damage hardening function used in the DEWCD model. 
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Fig. 3. Newton iteration scheme used to calculate the Lagrange multiplier with the 

hyperbolic hardening law used in the proposed model. 
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 Fig. 1 ), we define the wing micro crack propagation criterion as

ollows: 

f d0 (σ, a θ i ) = 

√ 

π a θ i 

(
F cos (θi ) 

πa 2 
θ i 

− σmin 

)
− K c 

√ 

π (35)

atisfying the criterion f d 0 is equivalent to satisfying the following

riterion, which will be adopted in the following for wing crack

ropagation: 

f d (σ, a θ i ) = 

(
cos (θi ) τ

i 
nm 

( 
a i 
a θ i 

) 2 − σmin 

)
− K c √ 

a θ i 
(36)

 θ i is the radius of the fictitious wing crack, which can be deter-

ined by projecting the damage tensor defined in Eq. (30) as fol-

ows: 

 θ i = ( 
| �r | 
N 

−→ 

n θ · � · −→ 

n θ ) 1 / 3 (37) 

→ 

 θ is the unit vector normal to the family of wing cracks of orien-

ation θ , and is expressed as: 

 

 θ = 

−→ 

m i cos (θi ) + 

−→ 

n i sin (θi ) (38)

The progressive stiffness degradation observed before the peak

f stress in experimental rock mechanics compression tests in-

icates that wing micro-cracks propagate in a stable way ( Yuan

nd Harrison, 2006 ). Theoretically, in the subcritical regime, cracks

an propagate even when the stress intensity factor is lower than

he material toughness. Moreover, the stress intensity required for

rack propagation increases as the crack propagates ( Savalli and

ngelder, 2005 ). In order to account for this hardening effect, we

ropose to express the material toughness as a hyperbolic function

f the crack radius, as follows: 

 c = 

a 3 / 2 

1 
K 0 

+ 
a 
σc 

(39) 

here a = a θ i for a crack in compression (leading to the propaga-

ion of wing cracks), and a = a i for a crack in tension. As shown

n Fig. 2 , the yield point depends on K 0 , the slope of the plot that

epresents the variations the toughness with the square root of the

racture length. The parameter σ c controls the peak driving force

hat the REV can sustain. 

.3. Damage potential and flow rule 

Inelastic strains observed after unloading are due to residual ge-

metric incompatibilities at the crack faces, which depend on the

amage-driving forces Y i . The micro-crack propagation criteria for-

ulated in Eqs. (29) and ( 36 ) depend on stress and cannot prop-

rly represent the occurrence of residual displacement fields after

nloading. We thus derive the evolution laws of inelastic strains

rom non associate flow rules. We introduce discrete damage po-

entials (expressed in terms of Y ) in a homogeneous function of
i 
egree one, as follows: 

 d (n i ) = Y i −C 0 (40)

ollowing a non-associate flow rule, the inelastic strain increment

an be computed from the damage potential as 

˙ in = 

M ∑ 

i =1 

˙ λi 

∂g d (n i ) 

∂σ
= 

M ∑ 

i =1 

˙ λi 

∂Y i 
∂σ

= 

M ∑ 

i =1 

w i 
˙ λi { c 0 〈 −→ 

n i · σ · −→ 

n i 〉 + −→ 

n i �
−→ 

n i 

+ c 1 [ σ · ( −→ 

n i �
−→ 

n i ) − ( 
−→ 

n i · σ · −→ 

n i ) 
−→ 

n i �
−→ 

n i ] } (41) 

here λi is Lagrange multiplier for each family of crack with nor-

al 
−→ 

n i . Similarly, the increment of damage density is calculated as:

˙ i = 
˙ λi 

∂g d 
∂Y i 

= 
˙ λi (42) 

he incremental damage density is calculated from the increments

f crack radius, as follows: 

ρi = 

N 

| �r | �(a 3 i ) (43) 

n which �(a 3 
i 
) represents the variation of the value of a 3 

i 
between

wo iterations. We have: �(a 3 
i 
) = 3(a i ) 

2 �(a i ) in which �( a i ) is

btained by using the consistency rule: 

(a i ) = −
∂ f d 
∂σ
∂ f d 
∂a i 

: �σ (44) 

he equation above requires calculating the derivatives of τ i 
nm 

and

min with respect to the stress tensor σ , which is computationally

ntensive. We employ the Newton iteration scheme to update the

adius of the micro cracks at each load step. As shown in Fig. 3 ,

he tangent of the yield criterion is calculated at each iteration i to

pproach the exact crack size at load step n+1, as follows: 

 n,i +1 = a n,i −
f d (σn,i , a n,i ) 

f ′ 
d 
(σn,i , a n,i ) 

(45) 

he convergence criterion ( r n,i ) is expressed as 

| r n,i || = || a n,i +1 − a n,i || ≤ εT OL (46)

here εTOL is a tolerance value. Once the increment of crack radius

s obtained for each crack orientation ( �( a i ), �( a θ i )), the increment

f damage tensor �� can be updated as 

� = 

M ∑ 

i =1 

N 

| �r | �( a i 
3 ) 

−→ 

n i �
−→ 

n i + 

M ∑ 

i =1 

N 

| �r | �( a θ i 
3 ) 

−→ 

n θi �
−→ 

n θi (47)

n the equation above, the variation of crack density in direction
 

n i accounts for the growth of cracks perpendicular to direction 
−→
n i 

n mode I, and for the growth of wing cracks that develop at the

ips of cracks that are not perpendicular to 
−→ 

n . The proposed model
i 
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Fig. 4. Calibration and validation of the DEWCD model parameters against exper- 

imental stress-strain curves obtained during triaxial compression tests under vari- 

ous confining pressures. (a) Triaxial data with a confining pressure σ3 = 13 . 8 MPa 

is used to calibrate the model. Triaxial datasets for confining pressures of σ3 = 6 . 9 

MPa and σ3 = 20 . 7 MPa are employed to validate the calibration. (b) Evolution of 

the three principal values of the damage tensor with the calibrated parameters, for 

the three confining pressures. 

N  

i  
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c  

D  

t  

t  

s  

c  
is named Discrete Equivalent Wing Crack based Damage (DEWCD)

model because frictional wing cracks are indirectly represented by

equivalent tensile wing cracks obtained by projection. The DEWCD

model is designed to capture splitting and crossing effects. We

used the quadrature rules explained above ( Bažant and Oh, 1986 )

to project the vectors 
−→ 

n θi on the 42 directions 
−→ 

n i . Ultimately, the

increment of crack density is obtained by projecting the increment

of damage tensor in each of the 42 directions considered in the

quadrature: 

�ρi = 

−→ 

n i · �� · −→ 

n i (48)

2.4. DEWCD model calibration and validation 

The Discrete Equivalent Wing Crack based Damage (DEWCD)

model depends on six constitutive parameters: the reference (ini-

tial) Young’s modulus E 0 , the reference (initial) Poission’s ratio ν0 ,

the reference (initial) microcrack radius a 0 , the microcrack density

(Number of crack per unit volume) N = 
N 

| �r | , the initial toughness
slope K 0 and the critical stress σ c . For an intrinsically anisotropic

material (i.e. with anisotropy not induced by micro-crack propaga-

tion), the model can easily be adapted by choosing different val-

ues of reference radius ( a 0 ) for different crack orientations. The

six parameters above have a sound physical meaning and can be

determined by performing standard mechanical tests (e.g., uniax-

ial and triaxial compression tests; uniaxial tension test; Brazilian

test), and microstructure characterizations (e.g. Scanning Electron

Microscopy; acoustic emissions). In the following, we calibrate and

validate the DEWCD model against a series of triaxial compres-

sion tests performed on North Dakota Bakken shale plugs in Cono-

coPhillips rock mechanics laboratory. All the samples were dry

( Amendt et al., 2013 ). Plugs were cored from the same depth and

lithology and were selected to avoid major bedding discontinu-

ities, and were considered homogeneous. We used the stress/strain

curves obtained with a confinement of 20 0 0 psi (13.8 MPa)

for calibration, and we validated the model with confinements of

10 0 0 psi (6.9 MPa) and 30 0 0 psi (20.7 MPa). Note that the

soil mechanics sign convention was adopted throughout the paper

(with compression counted positive). 

We used the Interior Point Algorithm programmed in MATLAB

to determine the unknown vector B = (E 0 , ν0 , a 0 , N , K 0 , σc ) that

minimizes the squared residual of the distance between experi-

mental results y i and numerical predictions f i ( X , B ). The residual

that is minimized iteratively is defined as: 

R (B ) = 

n ∑ 

i =1 

[ y i − f i (X , B )] 2 (49)

Where X stands for the vector of known input variables (e.g., strain

or stress, depending whether the load is controlled in force or dis-

placement). The algorithm was initialized with an initial guess, as

well as the lower bound and the upper bound of the coefficients of

the unknown parameter vector B . Then, triaxial compression tests

were simulated with the DEWCD model at the material point, and

the value of the residual R ( B ) was calculated based on the set of

parameters obtained at the previous iteration. The gradient of the

residual R ( B ) with respect to each parameter in the vector B was

calculated and used to minimize the difference between numerical

and experimental stress-strain curves, as follows: 

B n +1 = B n − γn �R (B ) (50)

Where γ n is the barrier parameter, which is updated at each it-

eration step in the Interior Point Algorithm. The procedure is de-

scribed in detail in ( Byrd et al., 20 0 0; Waltz et al., 2006 ). 

Fig. 4 (a) shows the experimental stress-strain curve (green star

marker) and the numerical stress-strain curve obtained after model

calibration (green solid line) for a confinement of σ = 13 . 8 MPa.
3 
ote that the calibration of the DEWCD model was based on exper-

mental data obtained before the failure stress, because the DEWCD

odel does not capture the interactions and coalescence of cracks

uring the post peak softening regime. Curves match closely ex-

ept for the lateral deformation, which is underestimated by the

EWCD model for damage values higher than 10%. We interpret

his discrepancy by the fact that shale is not a purely brittle ma-

erial. Ductile deformation at high damage induces large lateral

trains, which cannot be captured by the DEWCD model, espe-

ially for shales that contain significant amounts of clay/organic
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Table 1 

DEWCD parameters calibrated for Bakken Shale. 

Elasticity Initial State Damage function 

E 0 ν0 a 0 N K 0 σ c 

GPa – L N / L 3 MPa / L MPa 

40 .8 0 .32 0 .022 960 3 .6 1 × 10 4 
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Fig. 5. Variations of the stress at which the Young’s modulus is reduced to 25% 

of its reference (initial) value with the confining pressure. Comparison of DEWCD 

model predictions with the peak stress (strength) obtained experimentally in shale. 
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atter ( Sone and Zoback, 2013a; 2013b ). We simulated the triax-

al compression tests performed under confinements of σ3 = 6 . 9

Pa (solid blue line) and σ3 = 20 . 7 MPa (solid red line) using the

alibrated parameters, and compared the DEWCD predictions with

xperimental data (blue circle markers and red square makers, re-

pectively). Similar to the theory of plasticity, we define the yield

tress as the value of stress at which micro cracks start to prop-

gate (damage initiation), and we define the material strength as

he peak value of stress in the stress/strain curve. Fig. 4 (a) shows

hat the DEWCD model captures the increase of the yield stress σ y 

ith increasing confining pressure σ 3 . Over 800 sampling points

ere used on the experimental stress/strain curves before the fail-

re peak to assess the accuracy of the model predictions after cal-

bration. The error, defined as the distance between the numeri-

al and experimental curves, is less than 5%, which is considered

ery satisfactory provided the unavoidable microstructural differ-

nces between the initial rock samples. Fig. 4 (b) shows the evo-

ution of the principal values of the damage tensor for the three

onfining pressures considered. Micro-cracks normal to the axial

irection of the compression load ( x 1 ) are fully closed, therefore

1 = 0 in all tests. The lateral damage components �2 and �3 

re induced by the opening of wing cracks at the tips of non

orizontal cracks, which are subjected to local shear stresses. Lat-

ral damage increases exponentially with deviatoric stress. As the

eviatoric stress approaches the value of the peak stress noted

n the stress/strain curves, the tangent to the damage evolution

urve approaches infinity. Physically, this phenomenon corresponds

o strong micro-crack interactions leading to crack coalescence

nd macroscopic discontinuities. Overall, the performance of the

EWCD model for the calibrated parameters is very satisfactory.

he DEWCD model parameters calibrated for North Dakota Bakken

hale are reported in Table 1 . Using these calibrated model pa-

ameters, we simulated triaxial compression tests under confining

ressures ranging from 5 MPa to 28 MPa. We calculated the de-

iatoric stress at which the Young’s modulus was decreased to 25%

f its initial value. As shown in Fig. 5 , the value of that thresh-

ld stress increases linearly with the confining pressure. Moreover,

he variations of the threshold stress with the confining pressure

atch those of the compressive strength obtained experimentally.

his indicates that the DEWCD allows predicting the failure (peak)

tress. 

. Comparison of the DEWCD model with phenomenological 

nd micromechanical damage models 

In the following, we explain the theoretical formulation of a

icromechanical model ( Pensée et al., 2002; Pensee and Kondo,

003 ) and of the phenomenological Differential Stress Induced

amage (DSID) model, and we calibrate the micro-mechanical

nd DSID models against the same experimental dataset as

he DEWCD model. Then we compare the performance of the

icro-mechanical, DSID and DEWCD models in capturing damage-

nduced anisotropy, crack-induced dilation strains, damage hystere-

is, confinement-dependent strength, unilateral effects in compres-

ion, and distinct behaviors in tension and compression. 
.1. Formulation and calibration of the micro-mechanical damage 

odel 

Table 2 summarizes the main equations of the micro-

echanical model presented in ( Pensée et al., 2002; Pensee and

ondo, 2003 ). The free enthalpy (Gibbs free energy) is the sum of

he elastic deformation energy stored in the non-damaged matrix

nd of the potential energy due to the displacement jumps at the

icro-crack faces. A discrete formulation is adopted, with M possi-

le crack orientations characterized by a crack density and a uni-

ateral condition. Crack closure is considered elastic. Crack debond-

ng is the only dissipation mechanism considered in the model.

ased on the assumption of crack non-interaction, damage ( �) is

efined as the crack density tensor (i.e. as the sum of crack densi-

ies projected in their respective crack directions). For each of the

 micro-crack directions, the damage yield criterion is expressed

s a linear hardening law, in terms of the crack density and of

ts work-conjugate energy release rate. Since the only dissipation

echanism adopted in the model is crack debonding, an associ-

ted damage flow rule is adopted. 

We used the same triaxial compression test dataset obtained

or North Dakota Middle Bakken Shale as in Section 2.4 for micro-

echanical model clibration and validation ( Table 3 ). Following the

ame procedure as in Section 2.4 , we use the experimental results

btained with a confining pressure of σ3 = 13 . 6 MPa for calibra-

ion and the results obtained for confining pressures of σ3 = 6 . 9

Pa and σ3 = 20 . 7 MPa to verify the model parameters. As shown

n Fig. 6 (a), the high initial stiffness is compensated by a high dam-

ge propagation rate. Although the residual minimized by the cali-

ration algorithm reaches a very low value, the stress/strain curve

redicted by the micro-mechanical model does not match the ex-

erimental results satisfactorily, especially for the lateral deforma-

ion. The main micro-crack propagation mechanism is based on

icro-crack face sliding under compression. During a triaxial com-

ression test, the highest crack densities are those of cracks ori-

nted by an angle of approximately 45 degrees from the loading

xis. As a result, the axial damage component �1 (crack planes

arallel to the compression axis) is higher than the lateral damage

omponents �2 and �3 ( Fig. 6 (b)), which is counter-intuitive for a

ompression test. Fig. 6 also shows that the stress/strain response

redicted by the micro-mechanical model is the same for the three

onfining pressures investigated. This is because the damage yield
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Table 2 

Theoretical formulation of the micro-mechanical damage model. 

Micromechanical damage model 

Free Energy G = 

1 

2 
σ : S 0 : σ + 

1 

2 

∑ M 
i =1 w i { c 0 ρi ( 

−→ 
n i · σ · −→ 

n i ) 〈 −→ 
n i · σ · −→ 

n i 〉 + 
+ c 1 ρi [(σ · σ) : ( 

−→ 
n i �

−→ 
n i ) − σ : ( 

−→ 
n i �

−→ 
n i �

−→ 
n i �

−→ 
n i ) : σ] } 

ε = 

∂G s 
∂σ

= 

1 + ν0 

E 0 
σ − ν0 

E 0 
( Tr σ) δ + 

∑ M 
i =1 w i { c 0 ρi 〈 −→ 

n i · σ · −→ 
n i 〉 + −→ 

n i �
−→ 
n i 

+ c 1 ρi [ σ · ( −→ 
n i �

−→ 
n i ) − ( 

−→ 
n i · σ · −→ 

n i ) 
−→ 
n i �

−→ 
n i ] } 

Y i = 

1 

2 

∂ G s 
∂ ρi 

= w i { c 0 ( −→ 
n i · σ · −→ 

n i ) 〈 −→ 
n i · σ · −→ 

n i 〉 + 
+ c 1 [(σ · σ) : ( 

−→ 
n i �

−→ 
n i ) − σ : ( 

−→ 
n i �

−→ 
n i �

−→ 
n i �

−→ 
n i ) : σ] } 

Damage Criteria f d (n i , Y i , ρi ) = Y i − k (1 + ηρi ) 

Flow Rule ˙ ρi = 
˙ λi 

∂ f d (n i , Y i , ρi ) 

∂Y i 
= 

˙ λi 

˙ λi = 

Y i 
kη

= 

1 

kη

∂Y i 
∂σ

: ˙ σ

∂Y i 
∂σ

= w i { c 0 〈 −→ 
n i · σ · −→ 

n i 〉 + −→ 
n i �

−→ 
n i 

+ c 1 [ σ · ( −→ 
n i �

−→ 
n i ) − ( 

−→ 
n i · σ · −→ 

n i ) 
−→ 
n i �

−→ 
n i ] } 

G : Free enthalpy ε : Total strain k : Initial damage threshold 

σ: Stress tensor δ: Kronecker delta S 0 : Undamaged compliance tensor 

ρ i : Damage density Y i : Damage driving force ˙ ρi : Damage density rate 

E 0 : Young’s Modulus ν0 : Poisson’s ratio η: Damage hardening variable 

f d : Damage function ˙ λi : Lagrangian Multiplier w i : Weight in direction 
−→ 
n i 

Table 3 

Micromechanical damage model parameters calibrated 

for Bakken Shale. 

Elasticity Initial State Damage function 

E 0 ν0 a 0 N k η

GPa – L N / L 3 J / L 3 J / L 3 

53 .5 0 .35 0 .050 960 278 .9 116 .6 
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criterion is expressed in terms of energy release rate, which is es-

sentially controlled by deviatoric stress σ1 − σ3 . As a result, the in-

fluence of the confining pressure on the damage yield stress cannot

be captured by the micro-mechanical model. 

3.2. Theoretical formulation and calibration of the phenomenological 

DSID model 

The theoretical formulation of the DSID model ( Xu and Arson,

2014; 2015 ) is summarized in Table 4 . The damage tensor (noted

Ω) is a phenomenological internal variable, which controls the

degradation of material stiffness along principal crack planes. The

free enthalpy (Gibbs free energy, G ) is expressed as the sum of the

damaged elastic deformation energy stored in the material, the po-

tential energy that can be released by creating new material sur-

faces, and the potential energy that can be released by opening

cracks (i.e., the potential irreversible deformation energy). This free

enthalpy potential is expressed as a polynomial that is quadratic

in stress and linear in damage, which implies that the material is

linear elastic in the absence of damage ( Shao et al., 2005; Halm

and Dragon, 1998 ). Stress/strain relationships are obtained by de-

riving the Gibbs energy by stress. Damage evolution is controlled

by a damage function, similar to the Drucker-Prager yield function

(but expressed in terms of energy release rate instead of stress).

The damage flow rule is non-associate, and the damage potential

is chosen so as to ensure the positivity of dissipation associated to

damage. The irreversible deformation due to damage follows an as-

sociate flow rule, which ensures that dilation due to crack opening

takes place in the damage principal directions (i.e. in the directions

orthogonal to the crack planes). 

Similar to the DEWCD model and the micro-mechanical dam-

age models, we first calibrated the DSID model against experimen-
al stress-strain curves obtained during a triaxial compression test

erformed under a confining pressure of σ3 = 13 . 8 MPa, as shown

n Fig. 7 (a). Unlike the micromechanical damage model, the phe-

omenological DSID model can predict the stress-strain curves be-

ore the occurrence of damage. However, like the micro-mechanical

amage model, the DSID model fails at capturing large dilative lat-

ral deformation. Fig. 7 (b) shows that lateral damage components

2 and �3 , which correspond to crack planes parallel to the load-

ng axis, propagate with increasing deviatoric stress, and that ax-

al damage �1 remains equal to zero, which is physically reason-

ble. However, the rate of damage propagation is very small, even

t the peak stress. In other words, the DSID model predicts a con-

inuous hardening even after the experimental peak stress, which

s not physically reasonable. As shown in the magnified part of

ig. 7 (b), the DSID model can capture the dependence of the yield

tress to the confining pressure. This is conform to the yield cri-

erion chosen in the DSID model, which depends on the confin-

ng stress through the term αI ∗. However, the DSID model predicts

hat the material under high confining pressure softens faster, and

ields a higher level of damage. This inconsistency is due to the

nreasonable damage evolution predicted by the model and to the

egligible difference in yield stress in the three triaxial compres-

ion tests. This problem can be overcome by calibrating the DSID

odel against the whole set of experimental data instead of just

ne stress strain curve (however, we calibrated the DSID model

gainst the dataset obtained at a confining pressure of σ3 = 13 . 8

Pa to match the calibration procedure used in the two other

odels). 

.3. Simulation of uniaxial tension followed by compression 

One of the major characteristics of brittle solids such as rocks,

oncrete and ceramics, is that they yield at a very low tensile stress

nd fail soon after yielding. Before complete failure, stiffness dam-

ged in tension can be partially recovered in compression, due to

he unilateral effects of crack closure ( Mazars et al., 1990 ). In or-

er to assess the performance of the three damage models to cap-

ure tensile failure and unilateral effects, we simulated a uniaxial

ension test followed by unloading and uniaxial compression. All

imulations were done in MATLAB at the material point, with the

odel parameters calibrated above ( Tables 1, 3 and 5 ). 



W. Jin, C. Arson / International Journal of Solids and Structures 110–111 (2017) 279–293 287 

Fig. 6. Calibration and validation of the micromechanical damage model against 

triaxial compression tests performed on Bakken Shale. (a) Stress/strain curves (cal- 

ibration based on data obtained at 13.8 MPa confinement, and verification against 

tests performed under confining stresses of 6.9 MPa and 20.7 MPa). (b) Evolution 

of the three principal values of damage during the tests. 
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Fig. 7. Calibration and validation of the DSID model against triaxial compression 

tests performed on Bakken Shale. (a) Stress/strain curves (calibration based on data 
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Fig. 8 (a) and (b) show that according to the micro-mechanical

odel the tensile yield stress of Bakken shale is σy = 45 MPa. This

esult is unrealistic for a rock material, because most rocks fail

t that stress level in tension. This discrepancy is due to the fact

hat the projection of crack densities in the principal damage di-

ections yields non zero lateral damage ( �2 and �3 ), even in uni-

xial tension. Moreover, the damage evolution rate for both lateral

nd axial damage components is very slow. The phenomenological

SID model gives a reasonable tensile yield stress of σy = 15 MPa

 Fig. 8 (c)). However, the rate of damage propagation is slow and

xial damage amounts to only 10% when the tensile stress reaches

0 MPa. According to the DSID model, Bakken shale follows an
lastic behavior followed by hardening after the yield stress has

een reached ( Fig. 8 (d)). Fig. 8 (e) and (f) show that according to

he DEWCD model, Bakken shale yields at σy = 12 MPa in uniaxial

ension. After yielding, the damage propagation rate is high. Large

nelastic strains accumulate in the axial direction ( Fig. 8 (e)), which

s unrealistic, because brittle solids subject to tensile loads tend

o fail catastrophically without large deformation. That being said,

rack interactions other than the occurrence of wing cracks are ig-

ored in the DEWCD model, which is aimed to capture the dam-

ged behavior before the peak of stress ( Eq. (24) ). After a certain

evel of damage, micro-crack interaction and coalescence cannot

e neglected. In order to capture the transition between smeared
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Table 4 

Theoretical formulation of the DSID model. 

D.S.I.D. model 

Free Energy G (σ, Ω) = 

1 

2 
σ : S 0 : σ + a 1 Tr Ω( Tr σ) 2 + a 2 Tr (σ · σ · Ω) 

+ a 3 Tr σ Tr (Ω · σ) + a 4 Tr Ω Tr (σ · σ) 

ε E = 

∂G 

∂σ
= 

1 + ν0 

E 0 
σ − ν0 

E 0 
( Tr σ) δ + 2 a 1 ( Tr Ω Tr σ) δ + a 2 (σ · Ω + Ω · σ) 

+ a 3 [ Tr (σ · Ω) δ + ( Tr σ) Ω ] + 2 a 4 ( Tr Ω) σ

Y = 

∂G 

∂Ω
= a 1 ( Tr σ) 2 δ + a 2 σ · σ + a 3 Tr (σ) σ + a 4 Tr (σ · σ) δ

Damage Function f d = 

√ 

J ∗ − αI ∗ − k 

J ∗ = 

1 

2 
(P 1 : Y − 1 

3 
I ∗δ) : (P 1 : Y − 1 

3 
I ∗δ) , I ∗ = ( P 1 : Y ) : δ

P 1 ( σ) = 

∑ 3 
p=1 

[
H(σ (p) ) − H(−σ (p) ) 

]
n (p) � n (p) � n (p) � n (p) 

k = C 0 −C 1 Tr (Ω) 

Damage Potential g d = 

√ 

1 

2 
(P 2 : Y ) : (P 2 : Y ) 

P 2 = 

∑ 3 
p=1 H 

[
max 3 q =1 (σ

(q ) ) − σ (p) 
]
n (p) � n (p) � n (p) � n (p) 

Flow Rule ˙ ε id = 
˙ λd 

∂ f d 
∂σ

= 
˙ λd 

∂ f d 
∂Y 

: 
∂Y 

∂σ

˙ Ω = 
˙ λd 

∂g d 
∂Y 

G : Gibbs free energy ε E : Total elastic strain C 0 : Initial damage threshold 

σ: Stress tensor δ: Kronecker delta S 0 : Undamaged compliance tensor 

Ω: Damage variable Y : Damage driving force max( ·): Maximum function 

E 0 : Young’s Modulus ˙ Ω: Damage rate C 1 : Damage hardening variable 

ν0 : Poisson’s ratio H ( ·): Heaviside function a 1 , a 2 , a 3 , a 4 : Material parameters 

f d : Damage function ˙ λd : Lagrangian Multiplier P 1 and P 2 : Projection tensors 

g d : Damage potential ˙ ε id : Irreversible strain rate σ ( p ) ; n ( p ) : Principal stress tensor, vector 

Table 5 

DSID parameters calibrated for Bakken shale. 

Elasticity Free Energy Damage function 

E 0 ν0 a 1 a 2 a 3 a 4 C 0 C 1 α

GPa - MPa −1 MPa −1 MPa −1 MPa −1 MPa MPa - 

46 0 .186 7 . 35 × 10 −7 1 . 21 × 10 −4 −3 . 15 × 10 −11 2 . 39 × 10 −12 0 .01 1 .18 0 .399 
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and localized damage propagation, it would be more suitable to

couple the DEWCD model to a model of fracture mechanics. For

the sake of completeness, we show the results obtained for a ten-

sile stress up to 45 MPa to compare the DEWCD model with the

micro-mechanical and DSID models. We note that the introduction

of a damage potential together with non-associate flow rules in the

DSID and DEWCD models allows capturing the occurrence of resid-

ual inelastic strains after unloading, which are not accounted for in

the micro-mechanical model. Simulation results obtained with the

micro-mechanical and DEWCD models also highlight unilateral ef-

fects induced by crack closure in compression, which are not cap-

tured by the DSID model. 

Fig. 9 shows the evolution of the energy potentials for a uni-

axial tension simulation followed by unloading and uniaxial com-

pression. Note that at any point, the external work input equals

the sum of the elastic deformation energy stored in the REV and

the dissipation potentials. Dissipation results solely from crack

debonding in the micro-mechanical model. In the DSID model, the

total work input is the sum of the purely elastic strain energy

stored in the matrix, the additional damage-induced elastic strain

energy (due to stiffness degradation), and the inelastic strain en-

ergy (due to residual crack-induced deformation). In the DEWCD

model, elastic strain energy is stored in the matrix (‘ matrix elastic

strain energy’ in Fig. 9 (c)) and between crack faces (displacement

jumps - ‘damage induced strain energy’ in Fig. 9 (c)), and energy

is dissipated in the form of inelastic strain energy. The damage-

induced strain energy is one order of magnitude larger in the

DEWCD model than in the other two models, because of the signif-

icant damage growth rate predicted by the DEWCD model after the
 c  
eak stress. By contrast with the micro-mechanical and DSID mod-

ls, the DEWCD model predicts that the compressive strength of

he initial material is higher than that of the material that has been

amaged during the uniaxial tension loading stage: the compres-

ive strength is about 50 MPa in the virgin material ( Fig. 10 (f)),

hile is it only 5 MPa in the presence of tensile damage ( Fig. 8 (f)).

.4. Simulation of uniaxial compression cycles of increasing 

mplitude 

The compression strength of rock-like brittle solids is usually

n order of magnitude larger than the tensile strength. Require-

ents of thermodynamic consistency (i.e. positive dissipation po-

entials) and yield function differentiability make it challenging to

ombine two different criteria in tension and compression. Some

ormulations split the stress into compressive and tensile compo-

ents ( Comi and Perego, 2001; Shao and Rudnicki, 20 0 0 ); other

odels are based on the decomposition of strains into positive and

egative parts ( Dragon et al., 20 0 0 ). In the DEWCD model, crack

ropagation in modes I and II are modeled with two mode I propa-

ation criteria applied to two different categories of cracks (tensile

rack propagation and tensile wing crack propagation). In order to

ssess the performance of this modeling strategy in distinguishing

he yield and failure in tension and compression, we simulate a

yclic compressive loading path with the micro-mechanical, DSID

nd DEWCD models. Results obtained with the parameters cali-

rated above for Bakken shale are shown in Fig. 10 . 

In the micro-mechanical model studied here, the unconfined

ompressive yield stress is about 100 MPa ( Fig. 10 (a) and (b)),
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Fig. 8. Comparison of the stress-strain behavior and damage evolution predicted the micro-mechanical, DSID and DEWCD models, for a stress path that comprises a uniaxial 

tension (OA), an elastic compressive unloading (AB), followed by an inelastic compressive loading (BC). The three models were calibrated against the same experimental data. 
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hich is an order of magnitude higher than the 45 MPa tensile

ield stress found in the previous tests. With the DSID model, the

nconfined compression strength is σy = 40 MPa, which is accept-

ble for a rock material ( Fig. 10 (c) and (d)). However, the sample

till does not fail under a uniaxial compressive stress of 250 MPa,

hich means that the uniaxial compressive strength predicted is

ore than 250 MPa: this is approximately twice as much as what
as expected for shale. From Fig. 8 (d), it can also be seen that

ore than 60 MPa uniaxial tension is required to achieve a 0.3

amage. According to Kachanov’s calculations ( Kachanov, 1992 ), a

amage of 0.3 corresponds to the initiation of crack interactions,

bove which the framework of CDM is no longer valid and the

EV has reached failure. Accordingly, the present simulations indi-

ate that the tensile strength predicted by the DSID model exceeds
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Fig. 9. Evolution of the energy potentials during the simulation of uniaxial tension 

followed by unloading and compressive reloading. 
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60 MPa, which is several times higher than the value expected for

shale. 

Contrary to the micro-mechanical and DSID models, the

DEWCD model predicts values of yield stress and strength that

are in the range of values expected for a rock material like shale

( Fig. 10 (e) and (f)). The yield stress predicted by the DEWCD model
n uniaxial compression is 50 MPa. Damage reaches 0.3 for a uni-

xial compression stress of 180 MPa, and for a uniaxial tensile

tress of 30 MPa ( Figs. 8 (f) and 10 (f)). For the compression test

imulated with the DEWCD and DSID models, axial damage (crack

lanes perpendicular to the loading axis) does not propagate, and

he lateral damage components grow exponentially after the yield

tress is reached, which is more realistic than the damage evo-

ution predicted with the micro-mechanical model. In the DSID

odel, damage during the second loading cycle initiates when the

tress reaches the maximum stress value reached during the first

ycle. In the simulations done with the DEWCD model, damage

uring the second loading cycle initiates at a lower stress value

han the maximum stress value reached during the first cycle. The

EWCD model is the only model amongst the three tested that can

apture this hysteretic effect. 

. Conclusion 

The Discrete Equivalent Wing Crack Damage (DEWCD) model

ormulated in this paper couples micro-mechanics and Continuum

amage Mechanics (CDM) principles to study brittle materials like

ocks, ceramics and concrete. In this study, we focus on the fol-

owing complex features: (1) A non-linear stress/strain relation-

hip; (2) Damage-induced anisotropy of stiffness; (3) The occur-

ence of irreversible strains due to volume dilation; (4) A reduc-

ion of strength after the peak stress has been reached (soften-

ng); (5) An apparent increase of strength and ductility in com-

ression when the confinement increases; (6) Increasing hysteresis

n unloading-reloading paths as damage increases; (7) Unilateral

ffects and partial recovery of stiffness in compression; (8) Differ-

nt mechanical responses in tension and compression. 

The Representative Elementary Volume (REV) considered in the

EWCD model is a unit sphere which is discretized with 42 inte-

ration points (to represent 42 possible micro-crack plane orienta-

ions). The REV free enthalpy is the sum of the elastic deformation

nergy stored in the undamaged matrix and the potential deforma-

ion energy due to the relative displacement of crack faces. Cracks

re represented by penny-shaped inclusions. Damage at the REV

cale is obtained by integrating the crack densities over the unit

phere. The damage yield criterion is expressed at the microscopic

cale: if a crack is in tension, crack growth is controlled by a mode

 fracture mechanics criterion; if a crack is in compression, the

hear stress that applies at its faces is projected on the 42 direc-

ions considered in the numerical integration scheme, and cracks

erpendicular to these projected force components grow according

o a mode I fracture mechanics criterion. The projection of shear

tresses into a set of tensile forces allows predicting the occurrence

f wing cracks at the tips of pre-existing defects subject to mode

I failure. We assume that all the resulting mode I cracks do not

nteract and we use a dilute homogenization scheme. A hardening

aw is introduced to account for subcritical crack propagation, and

on-associate flow rules are adopted for damage and irreversible

trains induced by residual crack displacements after unloading.

he DEWCD model is calibrated and validated against triaxial com-

ression tests performed on Bakken Shale in ConocoPhillips rock

echanics laboratory. 

In order to highlight the advantages of the DEWCD model over

revious anisotropic damage models proposed for rocks, we sim-

lated: (a) A uniaxial tension followed by unloading and reload-

ng in compression; and (b) Uniaxial compression loading cycles

f increasing amplitude. We compared the results obtained with

he DEWCD model with those obtained with a micro-mechanical

odel and with a CDM model, both calibrated against the same

xperimental dataset as the DEWCD model. The three models pre-

ict a non linear-stress/strain relationship and damage-induced

nisotropy (1)–(2). The micro-mechanical model can capture uni-
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Fig. 10. Comparison of the stress-strain behavior and damage evolution predicted the micro-mechanical, DSID and DEWCD models, for a stress path that comprises two 

cycles of uniaxial compression loading – elastic unloading. The three models were calibrated against the same experimental data. 
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ateral effects (7) but not the phenomena (3)–(6). The DSID model

an capture the occurrence of irreversible strains (3), but cannot

apture phenomena (4)–(7). The DEWCD model can capture all

henomena (1)–(8) except the softening behavior (4), which char-

cterizes the mechanical response in case of crack interaction (be-

ond the scope of the present study). Note in particular that the
EWCD model is the only of the three models tested that provides

ealistic values of yield stress and strength in tension and compres-

ion (8). This is a significant advancement in the theoretical model-

ng of rock brittle behavior, because unified models of tension and

ompression failure proposed so far could not distinguish properly

he difference of behavior of materials in tension and compression.
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The micro-mechanical model used for comparison is based on

the same discrete formulation of the free enthalpy as the DEWCD

model, but does not account for wing crack propagation. The CDM

model used for comparison depends on the same phenomenolog-

ical variables as the DEWCD model (second-order damage tensor,

irreversible strains). Therefore, the numerical benchmark presented

in this paper is representative and can be used to assess the rela-

tive performance of the three models. The DEWCD model proved

to over-perform previous formulations purely based on micro-

mechanics or purely based on CDM. Moreover, the DEWCD model

depends on only 6 constitutive parameters which all have a sound

physical meaning and can be determined by direct measurements

in the laboratory. Future work will be devoted to the prediction

of crack coalescence and to the modeling of the material response

with interacting micro-cracks. 
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